The generator matrix 1 0 0 1 1 1 X 1 X^2+X 1 1 1 X^2 X^2+X X^2+X X^2 1 1 X^2+X 1 1 X^2+X 1 0 1 1 1 1 X^2 0 1 1 X^2 X 1 0 X 1 1 1 1 X^2+X 1 X 1 1 1 0 1 1 1 1 0 1 0 X^2 X^2+1 1 1 0 0 X^2 X^2+1 1 1 1 X^2+X X X X^2+X+1 1 X^2+X X+1 1 X 1 X^2+X+1 X+1 X 0 1 1 X^2+X+1 X^2+1 1 1 X^2+X+1 1 1 0 X^2+X X^2 X+1 1 X^2 1 1 X^2+1 X^2+X 1 1 X^2+X+1 X X 0 0 1 X^2+X+1 X+1 X^2 X^2+1 X 1 1 X^2+1 X^2+X X X+1 1 1 X 1 X X^2 X+1 X^2 1 X^2+X+1 X 0 X+1 X^2+1 X+1 X^2+1 X^2 X^2+X+1 1 X+1 X^2+X+1 X^2 X X^2+X X^2+1 X+1 X 0 0 1 X 0 X+1 X^2+X X^2+1 X^2+1 X^2+X 0 generates a code of length 52 over Z2[X]/(X^3) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+276x^50+56x^52+120x^54+4x^56+52x^58+3x^64 The gray image is a linear code over GF(2) with n=208, k=9 and d=100. As d=101 is an upper bound for linear (208,9,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 9. This code was found by Heurico 1.16 in 30.8 seconds.